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Abstract. We discuss how the presence of a suitable symmetry can guarantee the perturbative
linearizability of a dynamical system—or a parameter-dependent family—via the Poincaré
normal form approach. We discuss this formally at first, and later pay attention to the
convergence of the linearizing procedure. We also discuss some generalizations of our main
result.

1. Introduction

It is well known that the same procedure—based on the formal series of polynomial
changes of coordinates—devised by Poincaré [1–4] to integrate linearizable dynamical
systems†† in the neighbourhood of a fixed point, can also be used to normalize, again in
the neighbourhood of a fixed point, nonlinearizable dynamical systems, i.e. systems whose
linearization at the fixed point present resonances. This fact suggests that the Poincaré
procedure does not take full advantage of the peculiar nature of (locally) linearizable system,
so that it is not impossible to obtain, in this specific case, some improvement over the general
theory of Poincaŕe–Dulac normal forms.

It was recently proposed [5] that the linearizability of a dynamical system can be
analysed, and asserted under certain conditionsnon-perturbatively by considering the
symmetrieswhich are associated with the linearity of the system in suitable coordinates.

Here we want to show how these symmetry properties come into play—to ensure
linearizability of the system (by means of the formal, or possibly convergent, series of
near-identity changes of coordinates)—in the framework of theperturbativetheory, i.e. in
the theory of Poincaré–Dulac normal forms [1, 2]. Thus, although we investigate the same
kind of question as in [5], we operate in quite a different framework, and we can make little
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use of the results obtained there, as will be clear from the following; we discuss the relation
between [5] and the present work, i.e. between the global and the perturbative approach, in
the appendix.

In order to discuss the linearizability of a system in the perturbative approach, we
have naturally to consider the case of normal forms (NFs) in the presence of symmetry.
More specifically, it turns out that we have to consider NFs in the presence ofnonlinear
symmetry: indeed, the symmetries associated with the linearizable nature of the system
may be linear only in the coordinates in which the dynamical system is linear, i.e. when the
problem is already solved; moreover, such coordinates could be defined only locally in a
neighbourhood of the origin. Thus, rather than employing the classical theory of NFs in the
presence of linear symmetries [2, 6–8], we will use recent results [9, 10], which deal with
the general (i.e. nonlinear) case.

Needless to say, systems which can be linearized—albeit only locally—are highly non-
generic, and correspond to ones that can be exactly solved locally. This fact shows at the
same time the limited application of our result, as it cannot deal with generic systems, and
its interest, as it deals with systems which are special but also specially interesting, both in
themselves and as starting points for a perturbative analysis of more general ones.

It should be mentioned that the connection between ‘suitable’ symmetries and the
linearity of the NF has already been remarked—albeiten passant—in remark 4 of [9];
we want to discuss this in more detail for two reasons: on the one hand, for its practical
relevance; and on the other because it shows how the consideration of nonlinear symmetries
in NF theory really improves the results that can be obtained by considering only linear
symmetries.

2. The main result

Let us consider a vector fieldX, which in the coordinates (y1, . . . , yn) on Rn is simply
given by

X =
n∑
i=1

Aijyj
∂

∂yi
(1)

whereA is a real (n× n) matrix. This vector field obviously commutes with all the vector
fields

Y(k) =
n∑
i=1

[Ak]ij yj
∂

∂yi
(2)

associated to the (non-negative) integer powers of the matrixA. In particular, whatever the
matrix A, X commutes with the vector fieldS ≡ Y(0) which generates the dilations inRn

S =
n∑
i=1

yi
∂

∂yi
(3)

and it is easy to see that, conversely, the only vector fields commuting withS are the linear
ones. This observation is, of course, completely trivial; nevertheless, it is extremely useful
in studying the linearizability of nonlinear systems.

Let us now consider a (formal) near-identity (this means that(Dφ)(0) = I ) nonlinear
change of coordinates

yi = φi(x, . . . , xn). (4)
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Under this, the linear dynamical system

ẏi = Aijyj (5)

is changed, in general, into a nonlinear system

ẋi = f i(x) (6)

where it can be immediately seen that the functionsf i(x) are given by

f i(x) = [J−1(x)]ijAjkφk(x) (7)

whereJ is the Jacobian of the coordinate transformation

Jij = ∂yi

∂xj
≡ ∂φi

∂xj
. (8)

Notice that, as we assumed (4) to be a near-identity transformation, the inverse of the
Jacobian exists, at least in some neighbourhood of the origin, so that (7) makes sense.
Again by the near-identity of (4), we are guaranteed that(Df )(0) = A.

Remark 1. It should be noted that the theory can also be formulated in terms of Lie
transformations [11, 12]: in this case the coordinate transformation corresponds to the time-
one flow of an analytic vector field, and a number of technical problems—in particular,
concerning inverse transformations—are automatically taken care of. Here we stick to the
usual setting for simplicity.

In the new coordinates,X is expressed as

X =
n∑
i=1

f i(x)
∂

∂xi
≡ f i∂i . (9)

Similarly, S is now expressed as

S =
n∑
i=1

pi(x)
∂

∂xi
≡ pi∂i (10)

wherepi are nonlinear functions given explicitly by

pi(x) = [J−1(x)]ij φj (x). (11)

The geometrical relations between geometrical objects (in particular, vector fields) do not
depend, however, on the choice of coordinates; thus, [X, S] = 0 continues to hold. We
recall that, if two vector fieldsX = f i∂i andY = gi∂i satisfy [X, Y ] = 0, this means that,
in terms of the components of the vector fields

{f, g}i ≡ (f j · ∂j )gi − (gj · ∂j )f i = 0 ∀i = 1, . . . , n. (12)

Remark 2. Let us remark, however, that a vector fieldX may be linear in two different
coordinate systems even if they are connected by anonlinear transformation: consider, for
example, the one-dimensional harmonic oscillator

q̇ = p ṗ = −q
and a (nonlinear) transformation

Q = f (q2+ p2)q P = f (q2+ p2)p

wheref is a smooth function such thatf (0) = 1. In the new coordinate systemQ andP ,
one gets

Q̇ = P Ṗ = −Q
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and the dynamics is linear. Therefore, in this case, the dilation fields

S = q ∂
∂q
+ p ∂

∂p
and S ′ = Q ∂

∂Q
+ P ∂

∂P

provide two different linear structures which linearize the vector field along with the
respective symmetries, but are not taken into each other by the same transformation (indeed,
S = [1+ 2(q2+ p2)f ′/f ]S ′).

Suppose now that we have to study thenonlinear system (6), without knowing about
(4), and in particular we want to know if it is linearizable. It is quite easy to produce
examples in which, as in those we consider later, the Poincaré–Dulac theory fails to
recognize immediately the intrinsically linear nature of the system.

Remark 3. It should be specified that by this, we mean that the NF unfolding allows for
nonlinear terms; obviously, if one was going to actually perform the normalization—rather
than just determining the general NF unfolding corresponding to the linear part—there would
be a series of ‘miraculous’ cancellations, so that the coefficients of the nonlinear resonant
terms would vanish.

If we study the symmetry properties of (6), i.e. the vector fieldsY = gi(x)∂i for which
(12) is satisfied, we know thatif (6) is linearizable, then (12) admits at least one solution with
g = p given by (11). Notice that, in particular, this means that—also in thex coordinate—
the linearization ofY is just given by(DY)(0) = I ; this is again a consequence of the fact
that (4) is near-identity. (Here and in the following we use the short notation(DY)(0) = M,
with Y = gi∂i a vector field andM a matrix, to mean that(Dg)(0) = M.) It is interesting
to remark, and this constitutes our first result, that the converse is also true; i.e. we have
the following.

Theorem 1. Let X = f i(x)∂i be a vector field inRn. If the equation [X, Y ] = 0 admits
a solution for which(DY)(0) = I , where Y = gi(x)∂i , then X is linearizable by a
formal series of near-identity changes of coordinates. Moreover, there is a formal series of
near-identity changes of coordinates which linearizesX and which does also linearizeY ,
transforming it in the dilation fieldS, and this happens for any such solution.

The reason for this lies in a very simple consequence of a theorem given in [9] and
[10], which we report here for completeness, in a form suitable for our present purpose
(a stronger form of this theorem—not relevant to the present discussion—also exists, see
[9, 13]); in order to state this we have to introduce some terminology.

We refer to the classical (S+ N) decomposition of a matrix: this is the unique
decomposition of a matrixM into a semisimple and a normal part, called respectively
Ms andMn, which moreover, satisfy [Ms,Mn] = 0 (see, e.g., [14]). We also refer to
(semisimple) joint normal forms: denote byA, B, As andBs the homological operators [1]
associated toA, B, As andBs (with the notation introduced in (12),A = {Ax, .}, and so
on). We say that

X = f̃ i(y)(∂/∂yi) Y = g̃i (y)(∂/∂yi) (13)

where

f̃ (y) = Ay + F̃ (y) g̃(y) = B(y)+ G̃(y) (14)

are in semisimple joint normal form if both̃F and G̃ are in Ker(As) ∩ Ker(Bs), and that
they are in joint normal form if both̃F andG̃ are in Ker(A) ∩ Ker(B).
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Remark 4. We recall [1, 2, 15] that forA normal, Ker(A) = Ker(A+); we also recall that
Ker(A) and Ker(A+) are contained in Ker(As).

With this notation, we can state the following.

Proposition. See [9, 10]. Let the polynomial vector fieldsX and Y in Rn, expressed in
the x coordinates as

X = f i(x)∂i Y = gi(x)∂i (15)

commute, i.e. [X, Y ] = 0. Let the linearization ofX andY at x = 0 be given, respectively,
by A = (DX)(0) and B = (DY)(0), and let the matricesA and B have (S+ N)
decompositionsA = As + An and B = Bs + Bn; let F andG be the nonlinear parts
of f andg, so thatf = Ax+F andg = Bx+G. Then, by a formal series of near-identity
(Poincaŕe) transformations, it is possible to reducef andg to joint semisimple normal form;
if A andB are normal matrices, then it is possible to reducef andg to joint normal forms.

Proof of theorem 1. Under the hypotheses of theorem 1,B = I , so thatBs = B = I ;
in this case in particular Ker(B) = Ker(B+) = Ker(Bs) = K, and, independently ofA,
we can, due to the proposition, transformf to f̃ with F̃ ∈ K. It is a general result
that K = Ker(B+) consists of vector polynomials which areresonant with B; these are
characterized as follows [1]. Letλ1, . . . , λn be the eigenvalues ofB; thenK is spanned
by vectorsv = (v1, . . . , vn) which have all components equal to zero except forvr , which
is given by vr(x) = xm1 . . . xmnn , wheremi are non-negative integers† which satisfy the
resonance relation

n∑
i=1

miλi = λr . (16)

Notice that this will be a polynomial of orderm =∑i mi .
In the case of the identity matrix,λi = 1, and there is no resonance relation withm > 1.

Thus, forB = I , F̃ ∈ K actually means that̃F = 0, and thereforef̃ (y) = Ay. This proves
the theorem. �

Remark 5. It should be stressed that the above proof would also work ifB was not the
identity, but any matrix such that its semisimple partBs does not admit resonances, as also
discussed later.

3. Convergence of the linearizing transformation

It is well known that in general the Poincaré procedure is only formal, i.e. the series defining
the coordinate transformations (called in the following thenormalizing transformation, or
NT) required to take the system (6) into NF is in general not convergent. Some special
conditions which guarantee the convergence of the NT are known; these deal either with the
structure of the spectrum ofA = (Df )(0) (e.g. the condition that they belong to a Poincaré
domain [1–3]), or with some symmetry property off (see the Bruno–Markhashov–Walcher
theory, [16–19]; see also [20, 21]).

Here we just recall that ifA is real, its eigenvaluesσ1, . . . , σn belong to a Poincaré
domain if and only ifεRe(σi) > 0 for all i, where the signε = ±1 is the same for alli. In
this case, we are guaranteed of the convergence of the Poincaré normalizing transformation
[1, 2].

† It is understood that we work in the spaceV of polynomial vectors, so thatA, B, etc are defined on these. The
spaceV is naturally graded by the degree of the polynomials.
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Theorem 2. With the same notation and under the same hypotheses as in theorem 1,
the series of near-identity changes of coordinates which takesX and Y into linear NF is
convergent in a neighbourhood of the origin.

Proof of theorem 2. In the case of the matrixB = I , the eigenvalues are obviously in
a Poincaŕe domain, and the NT is therefore guaranteed to be convergent. Notice that in
general this NT would not be unique, being defined up to elements in the kernel of the
homological operatorB; however, forB = I this kernel is trivial, and the NT is unique.
Theorem 1 guarantees that this transformation also takesX into NF, and thus thatX can
be linearized by means of a convergent change of coordinates. �

Remark 6. Similarly to that remarked earlier concerning theorem 1, the proof would work
(and theorem 2 apply) for more general symmetries: for example, it would suffice to require
that the eigenvalues ofB belong to a Poincaré domain (see also section 5).

On the other hand, it is clear that the converse of theorem 2 (and of theorem 1
as well) is also true: indeed, the vector fieldX, once linearized, obviously admits the
dilation symmetryS, and, if the linearizing transformation is convergent, there exists an
analytic symmetryY = pi∂i with (DY)(0) = I , which is transformed intoS by the
transformation which linearizesX. So, focusing on the convergence of the normalizing
transformation [16–20], the above arguments can be summarized and completed in the
following form.

Theorem 3. A vector field X = f i(x)∂i can be linearized if and only if it admits a
(possibly formal) symmetryY = pi(x)∂i with (DY)(0) = B = I ; the NT which linearizes
X is convergent in a neighbourhood of the origin if and only if this symmetry is analytic.

Notice that theorem 3 includes the (trivial) case that the vector field itself is such
that (DX)(0) = I : the Poincaŕe criterion (mentioned earlier) is in this case sufficient to
guarantee that the vector field can be linearized by a convergent transformation: we can see
this case as one in which the symmetry requested by theorem 3 consists of the vector field
itself.

4. Families of vector fields

It should be stressed that the approach to the formal linearization, and the proof that this
is actually not only formal, given previously, and based on symmetry properties of the
vector field immediately extends to the case in which we have a family of vector fields;
Xµ depending smoothly on the real parametersµ ∈ Rm such that there is a familyYµ of
symmetry vector fields, i.e. of vector fields where [Xµ, Yµ] = 0, providedYµ have a linear
partB(µ) ≡ (DYµ)(0) = I .

We are also assuming, in view of remark 2, that the dynamic is linearizable with
respect to the same linear structure (i.e. independently of the parameterµ). In general,
the arguments given in theorems 2 and 3 remain valid considering changes of coordinates
depending smoothly onµ, and so we are guaranteed to have aµ-dependent family of
convergent NTs. In this framework, (1) and (4) would now be

Xµ =
n∑
i=1

Aij (µ)yj
∂

∂yi
(1′)

yi = φi(x1, . . . , xn;µ). (4′)
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Under this, the linear dynamical system

ẏi = Aij (µ)yj (5′)

is changed into the nonlinear system

ẋi = f iµ(x) (6′)

and thus in new coordinates we have

Xµ =
n∑
i=1

f iµ(x)
∂

∂xi
. (9′)

We will not repeat our previous discussion for the parameter-dependent case here.

Remark 7. We would like to stress that—in the same way as in the previous sections—our
discussion would also apply to the case in whichB(µ) = (DYµ)(0) is not the identity,
provided, for example, the eigenvaluesλi(µ) of B(µ) belong to a Poincaré domain for all
values ofµ; see also the next section.

Remark 8. In order to avoid possible confusion, we would like to briefly consider the
case where we have a family of vector fieldsXµ admitting a common symmetryY , i.e.
[Xµ, Y ] = 0 ∀µ. If B = (DY)(0) is the identity (or, however, does not admit resonances,
see also the next section), then according to our discussion we would have a unique
transformation which takes into NF the whole family of vector fieldsXµ at once, and
this can appear surprising. Notice, however, that this is the case only ifB does not admit
resonances, and in this caseXµ would become linear once transformed into NF. Thus, if
B = I , we know that any linear vector fieldXA = (Ax)i∂i commutes withY = (Bx)i∂i ; if
we change coordinates via a near-identity transformationx = φ(y), thenY = gi(y)∂i is a
symmetry of all the vector fieldsXA = f i(y)∂i , which depend on (n× n) parameters, i.e.
the entries of the matrixA.

5. Symmetries not having the identity as a linear part

In some cases, determining a symmetry whose linear part isnot B = I can also suffice
to guarantee the—formal or convergent—linearizability of the vector field, or at least the
possibility to considerably simplify it. This fact was already pointed out in remarks 5–7,
and we are now going to discuss it a little further, in particular with reference to the problem
of convergence of the NT.

First, let us consider the case whereB 6= I but Ker(B) = {0}, i.e. B does not admit
resonances (for simplicity we assumeB is semisimple): we know thatf can then be
linearized. If, in addition, the symmetryY is analytic and the matrixB satisfies the
‘condition ω’ of Bruno [3], then we are guaranteed that the NT which linearizesf is
convergent. This conclusion follows from the Bruno theorem [3]: indeed the other condition
required by the Bruno theorem (‘condition A’) is in this case automatically satisfied, as the
NF is in fact linear:Y = (Bx)i∂i .

Let us recall briefly, for completeness, what the requirements forB to satisfy ‘condition
ω’ are: we ask thatB is semisimple, and denote byλi its eigenvalues. Consider then the
set ofQ = (q1, . . . , qn) whereqi are integers such thatqi > −1 and(Q,3) 6= 0 (see [3]
for full details), with

(Q,3) = q1λ1+ · · · + qnλn (17)
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let ωk = min |(Q,3)| on Q such that(Q,3) 6= 0 and 1<
∑
qi < 2k. Then we say that

conditionω is satisfied if
∞∑
k=1

2−k lnω−1
k <∞. (18)

Let us then consider the case where againB 6= I , but its eigenvalues belong to a
Poincaŕe domain; in such a casef can be transformed, by means of a convergent series
of Poincaŕe transformations, into a very simple form (even if possibly nonlinear), i.e. can
be brought to be in Ker(B), which is in this case finite-dimensional. Indeed, in this case
we can takeY into NF, and we are guaranteed that the required NT is convergent (due to
the Poincaŕe domain condition). In doing this,X is transformed as well, and in the new
coordinatesX = f i(x)∂i , with f ∈ Ker(B).

Similarly, we can contemplate the case in which Ker(A)∩Ker(B) = {0} (this situation
is considered in example 3 later); in this case bothX andY are linearized when taken to
the joint normal form—as mentioned in [9]—but the (joint) normalizing transformation is,
without further assumptions, in general only formal.

If A satisfies conditionω, then f can be taken into normal form—i.e. in Ker(A)—
by a convergent transformation, but we are not guaranteed in general that the linearizing
transformation is also convergent. Notice, however, that this linearizing transformation is
in fact convergent in the particular case whereY is linear, Y = (Bij xj )∂i . Indeed, the
symmetry condition [X, Y ] = 0 becomes in this casef ∈ Ker(B), and it can be easily
verified that this condition is preserved by any transformation takingf into NF; i.e.f in
Ker(A) impliesf ∈ Ker(A) ∩ Ker(B) and therefore the NF off is necessarily linear. If it
is insteadB to satisfy conditionω, thenf can be taken to be in Ker(B) by a convergent
transformation; unlessB does not admit any resonance, this is obviously not sufficient to
ensure the convergent linearization off . Notice that in both these cases, ‘condition A’ is
automatically satisfied.

These considerations can be summarized in the following form.

Theorem 4. Let the vector fieldsX = f i∂i and Y = gi∂i satisfy [X, Y ] = 0, and
assume the matrixB = (Dg)(0) is semisimple; then: (a) if Ker(B) = {0} and B
satisfies conditionω, then X and Y can be linearized by a convergent transformation;
(b) if Ker(A) ∩ Ker(B) = {0}, thenX andY can be linearized (possibly by means of a
non-convergent transformation), but this transformation is convergent in the case whenY

is linear,Y = (Bx)i∂i . Also, if A = (Df )(0) (respectivelyB = (Dg)(0)) is semisimple
and satisfies conditionω, then there is a convergent transformation takingX (respectively
Y ) into normal (not necessarily linear) form.

It is worth emphasizing the consequence of theorem 4 in the case of families of vector
fields. Indeed, for vector fields of the form (6′) one has that the eigenvalues ofA vary
continuously withµ, so that generically [22], for almost all values ofµ the eigenvalues are
strongly non-resonant, and therefore, by the Siegel theorem, the system can be linearized by
an analytic change of coordinates. Moreover, there is a smooth (in the sense of Whitney)
dependence of the linearizing transformation onµ, whenµ varies in the Cantor set to which
correspond strongly non-resonant frequencies. However, the Siegel theorem does not give
any information on the behaviour of the system when the parameter belongs to the bad set
(complementary to the Cantor set).

Theorem 4 ensures that, provided there exists at least oneµ dependent symmetry (with
suitable properties), system (6′) can be linearizedfor any value of the parameter, and the
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linearizing transformation depends smoothly onµ, whenµ belongs to an interval, i.e. a
regular set, and not a Cantor set.

We would like, in concluding this section, to point out that it could happen that a
symmetry with its linear part the identity cannot immediately be determined, but that its
existence can be inferred from the presence of another symmetry (and the linear space
structure of the Lie algebra of symmetries).

Thus, consider the case of a two-dimensional systemX = f i(x)∂i whose linear partA
is semisimple and has distinct eigenvalues; assume thatX admits a symmetryY = gi(x)∂i
whose linear partB is semisimple and not proportional toA. (Obviously one does not have
to seek explicitly all of these conditions: the existence of distinct eigenvalues ensuresA is
semisimple, and then [A,B] = 0 impliesB is semisimple as well.) In this case, we are
always able to easily find a symmetry vector fieldZ—in particular, a linear combination
Z = aX+bY—whose linear part is the identity (it is for this reason that in example 3 later
we will have to consider a three-dimensional system).

The same argument is easily generalized ton-dimensional systemsX having n

symmetries—one of them beingX itself—with independent linear partBi , provided the
matricesBi are semisimple and span a nilpotent—for example Abelian—Lie algebra (for
generalizations, not needed in the present discussion, see [13]). Notice that, in particular,
if X is linearizable in the form (1) andAk are independent, these could be the vector fields
Y(k) considered in (2).

6. Several symmetries having the identity as a linear part

When we consider a fixed vector fieldX, there can be—obviously—different vector fields
Y which commute with it, i.e. which are symmetries forX; the set of all vector fields
which satisfy [X, Y ] = 0 is obviously a Lie algebra under the commutator; it is called the
symmetry algebra ofX and will be denoted byG. In particular, it can happen that several
Yi ∈ G satisfy (DYi)(0) = I . Notice that in general these do not form an algebra; in
particular, we know that(D[Yi, Yj ])(0) = [(DYi)(0), (DYj )(0)] (as it is immediately seen
by expandingY in Taylor series around 0), and therefore [Yi, Yj ] has a vanishing linear
part; thus, in particular, this linear part is not the identity. Notice, however, that there is no
reason for [Yi, Yj ] to vanish in general.

According to our theorem 1, we can choose eachYi , and simultaneously linearizeX
and Yi . It should be stressed that in this way we do not, in general, linearize otherYj ;
more precisely, not only do we not linearize them by the NT adapted to the pair (X, Yi),
but in general we are not able to linearize simultaneously differentY . This fact has to
do with the problem of simultaneously reducing to joint normal form a general algebra of
vector fields [10, 23]. We mention the case of interest here, i.e. of algebras of vector fields
having semisimple linear part (see [13] for a more general discussion): in this case, one can
prove that a joint normal form is possible only if the algebra is nilpotent, which includes
in particular the case of Abelian algebras [10].

It should be mentioned that the case of general—or even just solvable—algebras appears
to be extremely hard; indeed, it is related to the problem of simultaneous reduction to the
Jordan form of an algebra of matrices (the linear parts of the vector fields in question); or,
this problem is not solved, neither it is known under which conditions it can or cannot be
solved [24].

Remark 9. This is also an appropriate point to remark that in theorem 1 we could only
guarantee the existence of a transformation linearizing bothX and Y ; however, it is
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quite clear—a fortiori in the light of the above considerations—that we could also have
a transformation which linearizesX without linearizingY (or vice versa). Similarly, in
general the transformation which linearizesX andY will not be unique.

7. Examples

We will now consider some very simple examples. Examples 1–3 show how we
can apply our results to guarantee that a concrete nonlinear system can be linearized,
without actually performing the Poincaré normalization; example 4 deals with the
situation discussed in section 5, and the somewhat artificial example 5 (see later for its
construction) attempts to show how the method can deal with ‘seriously wrong’ initial
coordinates.

Example 1. Consider the dynamical system inR2 given by

ẋ = x ẏ = 3y − x2. (19)

The linear part of this is given by the matrix

A =
(

1 0
0 3

)
(20)

and the general NF corresponding to such a linear part is given by

ẋ = x ẏ = 3y + αx3 (21)

with α an arbitrary real constant.
By explicit (standard) computations, one can check that the symmetry algebra of (19)

is spanned by the vector fields

Z1 = x∂x + 2x2∂y Z2 = (y − x2)∂y (22)

(in particular,X = Z1+ 3Z2 corresponds to (19) itself); if we chooseY = Z1+ Z2, i.e.

Y = x∂x + (y + x2)∂y (23)

we find a symmetry vector fieldY , whose linearization is indeed(DY)(0) = I .
This guarantees that our system can be linearized, and actually provides the linearizing
transformation as well.

In the above example, we had a very simple situation, as no parameter appears in the
vector field, and the eigenvalues belong to a Poincaré domain, so that the convergence
of the NT is guaranteed. Thus, the only non-trivial result is that the termαx3 in (21)
actually disappears from the normalized form. In the following examples, we consider
more complicated cases.

Example 2. Let us consider again a two-dimensional system, i.e.

ẋ = x + x4y ẏ = −2y − x3y2. (24)

The linear part of this is given by the matrix

A =
(

1 0
0 −2

)
(25)

and the general NF corresponding to such a linear part is given by

ẋ = x + xφ1(x
2y) ẏ = −2y + yφ2(x

2y) (26)

whereφi are two arbitrary (smooth) functions.
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A symmetry vector field of this is given by

Y = (x + 4x4y)∂x + (y − 4x3y2)∂y (27)

which has a linear part given byB = I , and thus we conclude that the system (24) can be
reduced to its linear part by a convergent normalizing transformation.

Notice that in this case Ker(A) is infinite-dimensional, and the eigenvalues do not belong
to a Poincaŕe domain.

Example 3. We consider now a (fourth-order) system inR3

ẋ = x + a1x
3y + b1xy

2z

ẏ = −3y + a2x
2y2+ b2y

3z (28)

ż = 9z+ a3y
2z2+ b3y

2z2

whereai andbi are arbitrary constants; thus,

A =
( 1 0 0

0 −3 0
0 0 9

)
. (29)

A (linear) symmetry for this DS is given by

Y = x∂x − 2y∂y + 4z∂z (30)

and we have

B =
( 1 0 0

0 −2 0
0 0 4

)
. (31)

In this case, both Ker(A) and Ker(B) are infinite-dimensional, but their intersection is
just {0}. Notice also that their eigenvalues (both forA and B) are not in a Poincaré
domain.

According to the arguments in section 5, we can conclude thatX can be linearized by
a convergent transformation.

Example 4. In this example we merely want to illustrate the discussion of section 6, and
consider a case strongly related to one already considered in example 6 of [5]. However,
here we make different hypotheses concerning the linear part in which we have several
non-commuting symmetriesY of a given vector fieldX, such that(DY)(0) = I . To avoid
unnecessary complications, we considerX to be already in linear form; it is of course
possible to rephrase the example by settingX to be nonlinear, by means of any suitable
change of coordinates.

Consider the linear vector field

X = x ∂
∂y
− y ∂

∂x
. (32)

It can be immediately checked that any vector field of the form

Y = f (r2)X + g(r2)Z (33)

is a symmetry ofX, where

Z = x ∂
∂x
+ y ∂

∂y
(34)

andr2 = x2+ y2.
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In particular, if we choosef andg such that

f (0) = 0 g(0) = 1 (35)

we have a symmetry vector field with linear part the identity.
We can rewrite such vector fields as

Yf,h = f (r2)X + (1+ h(r2))Z (36)

where it is understood that bothf andh vanish in zero.
One can readily check that

[Yf,h, Yφ,η] = 2r2[(1+ h)φ′ − (1+ η)f ′]X + 2r2[(1+ h)η′ − (1+ η)h′]Z (37)

and thus thatYf,h do not commute among themselves. More precisely,Yφ,η commutes with
Yf,h if and only if

φ = c1f + c2 1+ η = c1(1+ h)
with c1 andc2 two arbitrary real numbers; it should be noticed that when we linearizeYf,h,
which reduces then toZ, the commuting fieldsYφ,η also reduce toZ, as such fields also
have the identity as its linear part.

From this short discussion, we can draw several conclusions. First,X admits a symmetry
with its linear part the identity; however,X is already linear, so we should not enquire about
it being linearizable. As forYf,h, these all admit the linear vector fieldX as symmetry, but
(DX)(0) 6= I ; thus, the first part of theorem 1 cannot guarantee the linearizability ofY . On
the other hand, the second part of the same theorem does guarantee that it is possible to
takeY into linear form; this is not really a surprise, as the linear partY0 of Y is associated
to the identity matrixI (indeedY0(x) = Ix), and the eigenvalues of this are not resonant in
the Poincaŕe sense, but, moreover, belong to a Poincaré domain [1], so that the same result
could be obtained by classical Poincaré theory.

Finally, for what concerns linearizing differentY at the same time, the above
computation for the commutator shows that in general—i.e. unless (37) vanishes—we are
not able to simultaneously linearize differentYf,h.

Remark 10. The vector fieldsYf,h were also considered in example 6 of [5], and found
to be nonlinearizable. In order to avoid possible misunderstandings, it should be stressed
that the hypotheses made on the linear parts—and in particular on the role of the rotation
component of the vector field in its linearization—are different in the present paper and in
[5]. It should also be mentioned that in [5] we considered global linearization, while here
we are in the (perturbative) framework of NF theory, and we consider only linearization in
a neighbourhoodU of the origin. This point is further discussed in the appendix.

Example 5. As a final example, we consider an apparently hopelessly complicated system
(see later for how it was generated), i.e.

ẋ = f1(x, y, z) = [αx − y] − x2− [3xy2+ 2αy3]

−6[x3y + αx2y2] − 3[x5+ 2αx4y + y5] − [2αx6+ 15x2y4]

−30[x4y3+ x6y2] − 3[x10+ 5x8y]

ẏ = f2(x, y, z) = [x + αy] − [αx2− 2xy] + [2x3+ y3]

+[9x2y2+ 4αxy3] + [15x4y + 12αx3y2] + [7x6+ 12αx5y + 6xy5]

+[4αx7+ 30x3y4] + 60x5y3+ 60x7y2+ 6[5x9y + x11]
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ż = f3(x, y, z) = βz+ [2xy + (2α − β)y2]

+[2x3+ 2(2α − β)x2y + 3xy2+ αy3+ (2α − β)y3]

+[(2α − β)x4− 3αx2y2+ 6xy3+ 2y4] + [6x3y2+ 8x2y3+ 3y5]

+[12x4y2+ 27x2y4+ 12αxy5] + 9[5x4y3+ 4αx3y4]

+[2x8+ 8x6y + 21x6y2+ 36αx5y3+ 18xy7] + [12αx7y2+ 90x3y6]

+180x5y5+ 180x7y4+ 90x9y3+ 18x11y2. (38)

In this case the linear part is given by

ẋ = Ax (39)

with x = (x, y, z) andA the matrix

A =
(
α −1 0
1 α 0
0 0 β

)
. (40)

Despite the very complicated form of (38), one can check explicitly that
X = fi(x)(∂/∂xi) commutes withY = gi(x)(∂/∂xi) (here and in the following example,
(x1, x2, x3) = (x, y, z)), where

g1(x) = x − 2y3− 6x2y2− 6x4y − 2x6

g2(x) = y − x2+ 4xy3+ 12x3y2+ 4x7+ 12x5y

g3(x) = z+ y2+ 2x2y + 2y3+ x4− 3x2y2+ 12xy5+ 36x3y4+ 36x5y3+ 12x7y2. (41)

The linear part of this vector field corresponds only to the identity matrix, and thus
our theorem guarantees immediately thatX can be reduced to its linear part; i.e. in NF
coordinates we have

X = (Aij yj ) ∂
∂yi

. (42)

Actually, the system (38) was obtained from (42) by the change of coordinates

y1 = x1+ (x2
1 + x2)

3 y2 = x2+ x2
1 y3 = x3− x3

2 − (x2
1 + x2)

2 (43)

andY is, in y coordinates, nothing more than the dilation vector field, i.e.

Y = yi ∂
∂yi

. (44)

Similarly, we could have considered the vector field

Z = ((A2)ij yj )
∂

∂yj
(45)

which depends onα andβ, and which obviously commutes withX (and withY ).
We stress now that we have a two-parameter family of systems (42), and that asα and

β are varied, this goes through resonances, and the eigenvaluesλ± = α± i andλ0 = β can
be in a Poincaŕe domain or otherwise. However, our symmetry method is not sensitive to
these facts, and works for all values of the parameters.
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8. Some further remarks

Remark 11. In the previous example 1, we have been able to identifyall the symmetries
of our system. We would like to stress, however, that the only important fact from our point
of view is that we are able to determineonesymmetry with the required linear part: this is a
much simpler task, and this is what has been done in the other examples. As it is generally
the case with symmetry methods for differential equations, it is the possibility of obtaining
relevant information from the knowledge ofone symmetry (or a symmetry subalgebra),
without the need to know the full—in general, infinite-dimensional—symmetry algebra of
the dynamical system under study, which makes our method applicable.

Remark 12. In general, one could try to determine perturbatively the functionspi(x), by
expanding them in homogeneous terms aspi(x) =∑∞m=1p

i
m(x), wherepim(ax) = ampim(x),

and solving the determining equations order by order [25]; in particular, one should require
pi(x) = xi . It should also be mentioned that if in this way we determine a solution (or a
solution exists) only up to some orderk, we can guarantee that the system can be linearized
up to terms of orderk [25].

This information, although more limited than a full linearization property, can equally
be of great utility: first, because in actual computations one considers in most cases a
truncation at some (high) orderk; and second, because if we combine such a result with the
analysis of resonances, in order to guarantee the full linearizability of the system, it suffices
to guarantee the existence of a symmetryY with linear part the identity up to orderk of
the highest order resonance of the system (in example 1 one would only have to go up to
order three). Notice that we are guaranteed that this order is finite when the eigenvalues
belong to a Poincaré domain.

Remark 13. It can be helpful to see theorem 1 from a slightly different perspective than the
one used in section 2 (we use freely the notation employed there); this discussion actually
repeats points already mentioned, and is thus also a way to summarize our argument. As
(DY)(0) = I , we know [1] thatY is biholomorphically equivalent to its linear part in
a neighbourhoodU of the origin (this only depends on the fact that the eigenvalues of
(DY)(0) belong to a Poincaré domain and there are no resonances, so that it would extend
to more general linear parts(DY)(0) = B). When we apply the NT we have, denoting byy
the ‘new’ coordinates,Y = yi∂/∂yi , andX = f̃ i(y)∂/∂yi ; however, the relation [X, Y ] = 0
is independent of the coordinate representation ofX andY , and thus in the neighbourhood
U in which the NT is not only formal (actually, as mentioned previously, is biholomorphic)
we necessarily havẽf i(y) = Aijyj with A a matrix, and actuallyA = (DX)(0).

Remark 14. The previous remark also shows what results can be expected when we deal
with Ck functions rather than with a formal power series: ifY is aCk vector field with, for
example,(DY)(0) = I , we can put it into NF—i.e. linearize it—by aCk−1 transformation;
the rest of the argument follows as before, and thus we conclude that ifX and Y are
commutingCk vector fields, with the same hypotheses as above concerning their linear parts,
then they can be simultaneously linearized by aCk−1 NT. We thank N N Nekhoroshev for
this observation.

Remark 15. Finally, we would like to point out that the present approach is related to the
study of integrability conducted by Marmo and collaborators, see for example [26, 27]; the
use of symmetries to study the linearizability of a dynamical system has been considered,
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in a non-perturbative approach (related to the general theory of symmetry methods for
differential equations [28–31]) in [5].
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Appendix. On perturbative and non-perturbative linearization

As already pointed out in the introduction and in the body of the paper, in the present work
we discuss the same problem as in [5], i.e. the relation between symmetry and linearizability
for dynamical systems; the main difference between the two approaches being that there
we used a non-perturbative and global approach, while here we remain in the framework
of perturbation theory. However, it is quite clear that (strong) relations have to be present
between the two approaches, and this appendix is devoted to the discussion of these.

First, in the perturbative approach one should distinguish between formal linearization
and an actual one, i.e.—in the present setting based on NFs—between the case in which
the NT providing the linearization of the system is purely formal, and the case where it
converges. It is quite clear that in the case of purely formal linearization, we should expect
in general that the system is not linearizable when we consider global transformations, i.e.
in the sense adopted in [5].

The second point is that, even when the NT is convergent, this transformation is in
general by no means global, i.e. it is defined only on some neighbourhoodU of the origin.
Thus, even in this case, it is not surprising if we get results which do not agree with those
obtained by the approach proposed in [5].

It should also be pointed out that it is possible that a system can be linearized, globally
or only in a neighbourhood of the origin, butnot by a near-identity transformation: in this
case, it cannot be linearized by the NF approach. An example of this situation is provided
by

ẋi =
n∑
j=1

Aij
ρ2xj

ρ2+ x2
i

(A1)

(with ρ2 =∑n
i=1 x

2
i ), which is nothing else than

ẏi = Aijyj (A2)

with the change of coordinatesyi = ρ2xi .
Let us now come back to the differences between global and local linearization; a

clarifying example in this respect is provided by a nonlinear oscillator described by (here
r2 = x2+ y2)

ẋ = −r2y − (r2− 1)x ẏ = +r2x − (r2− 1)y (A3)

which can be solved (e.g. passing to polar coordinates), and it is clear by its behaviour that
it cannot be linearized in the global sense, according to [5], by the same arguments used in
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[5]. On the other hand, its linear part is just the identity, and thus by the standard results
in NF theory discussed here, it can be linearized by a convergent transformation (in fact, it
is biholomorphically equivalent to its linear part in a neighbourhoodU of the origin [1]),
but it is obvious that such a neighbourhoodU cannot include the limit cycle.

Another example, which we want to discuss at some length in the following, is provided
by the vector fieldsYf,h considered in example 4 of section 7. Thus, we have that—not
surprisingly—global and local linearization are quite different. However, the discussion
conducted in [5] could be restricted to a neighbourhoodU of the origin; in this case, the
results obtained by the two approaches should be—when the NT is convergent—equivalent.

We are thus presenting here a short discussion of the restriction of the approach of [5] to
such a neighbourhood; we will, for the sake of clarity, discuss systems as those encountered
in example 4 (to avoid confusion with the notation used in this example and in (A3) as
well, we are introducing here new and independent notation). Precisely, we want to discuss
the problem of the existence of a diffeomorphism† 8 : U → U conjugating a vector field
Y , such thatY (0) = 0, to the dilation vector field

Ỹ = η1
∂

∂η1
+ η2

∂

∂η2
. (A4)

As Y (0) = 0 andỸ (0) = 0, we also require that8(0) = 0.
First, we notice that the eigenvalues ofA = (DY)(0) are invariants under any such8

(of class at leastC1); indeed,Y induces its liftY T on TU , given (withvi spanning a basis
in TxU ) by

Y T = Y i ∂
∂xi
+ ∂Y

i

∂xj
vj

∂

∂vi
(A5)

and, asY (0) = 0, we have

Y T(0) = ∂Y i

∂xj
(0)vj

∂

∂vi
≡ Aijvj

∂

∂vi
. (A6)

Also, 8 : U → U induces a diffeomorphism8T : TU → TU ; thus for conjugated fields
Y , Ỹ , Y T and Ỹ T are conjugated in the origin by8T. We conclude that all the algebraic
invariants of(DY)(0) and of(DỸ )(0) coincide. Thus, we have that anecessarycondition
for Y and Ỹ to beC1-conjugated is that the matricesA = (DY)(0) and Ã = (DỸ )(0) are
conjugated.

In the case of

Y ≡ Yf,h = [1+ h(r2)]Z + f (r2)X (A7)

we have thus that a necessary condition forY to be conjugated tõY is thatA = (DY)(0)
is conjugated to the identity matrix. But in this caseA is just the identity matrix, as
f (0) = h(0) = 0.

If we consider the more general family of vector fields (see example 6 of [5])

Yα,β = α(r2)Z + β(r2)X (A8)

we have that

A =
(
α(0) −β(0)
β(0) α(0)

)
(A9)

and thus we have as a necessary condition that the determinant and trace ofA are equal to
that of the identity matrix; these two conditions together mean thata(0) = 1 andb(0) = 0,

† In the present discussion, a diffeomorphism will be meant to be of classC1, and not necessarilyC∞.
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i.e. A = I (obviously the identity matrix can only be conjugated to itself). This condition
is verified in (A7), but not in the case considered in [5].

Although a necessary condition can be useful to ensure linearizability, it would be
preferable to have a necessary and sufficient condition; this is provided by the existence of
two solutionsη1 andη2, such thatη1(0) = η2(0) = 0 and which are functionally independent
on U , to

LYη = η (A10)

(where, as in the following,LY is the Lie derivative along the vector fieldY ). We could, of
course, attempt a solution of this by series expansion: this would be essentially equivalent
to the Poincaŕe method.

In the case ofY = Yf,h this equation reads

LZη + f (r2)LXη + h(r2)LZη = η. (A11)

In the general case, it can also be appropriate to observe that ifY is conjugated in
U ⊆ Rn (with {O} ∈ U ) to the linear field

YA = Aji ηj
∂

∂ηi
(A12)

then there will existn functionally independent solutions to

LYηi = Aji ηj . (A13)

It should be stressed that in this way we can show that ifY is locally conjugated to
the dilation fieldỸ , then necessarily(DY)(0) = ±I ; this is the converse to the statement,
well known in NF theory, that if(DY)(0) = ±I thenY is locally conjugated to the dilation
field.

It should be stressed also, for completeness of discussion, that a vector field can be
somehow correlated to the dilation field, for example being proportional to it, without being
conjugated to it. Indeed, consider the vector field

Y = 1

3
x

d

dx
(A14)

and let us look for solutions to (A10). This yields(1/3)x dη/dx = η and thusη(x) = x3;
thusη is analytic, but it does not define a diffeomorphism (its inversex = η1/3 is singular
in the origin).

Finally, we would like to mention that, if we take the view adopted in the appendix,
the arguments presented in the main body of the paper can be reinterpreted as a discussion
of perturbative techniques, i.e. of the use of Poincaré theory, to solve (A11).
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